Local Wiener–Hopf factorization and indices over arbitrary fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-factor lifting and factorization of polynomials over local fields

Let f (x) be a separable polynomial over a local field. The Montes algorithm computes certain approximations to the different irreducible factors of f (x), with strong arithmetic properties. In this paper, we develop an algorithm to improve any one of these approximations, till a prescribed precision is attained. The most natural application of this ‘‘single-factor lifting’’ routine is to combi...

متن کامل

Multiplication over Arbitrary Fields

We prove a lower bound of 52n2 3n for the rank of n n–matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.

متن کامل

On the Indices of Curves over Local Fields

Fix a non-negative integer g and a positive integer I dividing 2g − 2. For any Henselian, discretely valued field K whose residue field is perfect and admits a degree I cyclic extension, we construct a curve C/K of genus g and index I. This is obtained via a systematic analysis of local points on arithmetic surfaces with semistable reduction. Applications are discussed to the corresponding prob...

متن کامل

On the Indices of Curves over Local Fields (2011 Version)

Fix a non-negative integer g and a positive integer I dividing 2g − 2. For any Henselian, discretely valued field K whose residue field is perfect and admits a degree I cyclic extension, we construct a curve C/K of genus g and index I. This is obtained via a systematic analysis of local points on arithmetic surfaces with semistable reduction. Applications are discussed to the corresponding prob...

متن کامل

Quadratic Forms over Arbitrary Fields

Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2009

ISSN: 0024-3795

DOI: 10.1016/j.laa.2008.10.001